
NAT'L INST; OF

A 11 ID 5 SS2745

I llilllliHi
NIST

PL
^(-/CATIONS

NISTIR 6278

An Authentication Framework for

Web Access to Remote Hosts

Ryan P. McCormack
John E. Koontz
Judith Devaney

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Information Technology Laboratory

Gaithersburg, MD 20899

oc

100

U56

HO. 6278

1999

NIST

NISTIR 6278

An Authentication Framework for

Web Access to Remote Hosts

Ryan P. McCormack
John E. Koontz
Judith Devaney

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Information Technology Laboratory

Gaithersburg, MD 20899

January 1999

&& OF Cq

W
WSM

Sr <- >
Mr ES o*

U.S. DEPARTMENT OF COMMERCE
William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION
Gary R. Bachula, Acting Under Secretary

for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Raymond G. Kammer, Director

U.S. DEPARTMENT OF ENERGY
Washington, D.C. 20858

An Authentication Framework for Web Access to Remote Hosts

Ryan P. McCormack, John E. Koontz, Judith Devaney

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

January 14, 1999

Abstract

An authentication framework is described that provides a secure means for clients to access remote

computing resources via the Web. Clients authenticate themselves to a proxy Web server using a secure

protocol and a digital certificate. The server constructs a fingerprint (digest) of the certificate using a

secure hash function. This hash value acts as a user’s identification, which is used to obtain remote login

information for that user from an authentication database. Client commands can then be executed by

the Web server on remote hosts using the Secure Shell protocol. The system does not require a large

amount of specialized software, and creates a secure, encrypted chain between the client and any number
of remote resources.

1 Introduction

Authentication is a part of everyday life in modern society, from ATM cards to driver’s licenses to passports;

it is essential in many instances to be able to demonstrate identity. The same is true in electronic environ-

ments like the Internet, where it is often desirable to provide access to electronic resources for a limited set

of authorized users. However, in these environments, there is no recourse to physical means of identification

such as photographs. One must resort to other technologies to establish identity. In the past, electronic au-

thentication was most commonly done using login-password identification, but for most, if not all, of today’s

applications, this method no longer provides the needed level of security. Authentication methods exist that

meet more stringent security requirements, but these are not available in all computing environments.

Another issue with the rise of the information age has been just how to gain access to all of the resources

available, restricted or otherwise. The proliferation of computing platforms in the world often presents a

daunting task to users. This is one major reason the World-Wide-Web has become so popular: it provides

a universal interface to access a wide variety of resources. It would be useful if strong authentication

technologies could be united with the Web in order to provide access to a broader spectrum of resources.

This has already been done to a certain extent with the introduction of the Secure Sockets Layer (SSL) [1]

protocol and digital certificates [2]. However, this type of authentication is often only a first step in the

authentication process; servers may, for example, wish to gain more information about clients to provide

selective access. At the present, it seems that this is typically handled on a case-by-case basis, and usually

with specialized software on the server side. In addition, the resources being accessed are usually confined

to the Web server host, or to other hosts accessible via the Web.

In this paper, we present a means for clients to gain access to computing resources on a group of distributed

hosts by using strong authentication in conjunction with the Web. Hosts are necessarily networked, but need

not be accessible via the World-Wide-Web. This unites the browser interface, recognized by most users, with

an arbitrary collection of remote computing resources. The authentication framework presented uses mostly

existing technologies, requires little specialized software, and can be used to deal with a wide variety of

computing tasks.

1

2 Authentication Framework

In order to set the groundwork for the authentication framework, we first discuss the context in which

authentication takes place. A model is provided that describes the authentication transaction, and the

security requirements for this model are enumerated.

2.1 Model

The basic model being treated involves a three party transaction with a client, a server, and one from a

collection of remote resources. The client has a valid account on the selected remote system, and wishes to

perform some action on this system that requires basic login-password authentication. Once this authentica-

tion is performed, the client can perform whatever actions are allowed, given their privileges as a valid user.

The primary goal of the present work is to allow the client to transparently access the remote resource using

a Web browser, without requiring them to present their password or login. It is also highly desired that

such a system have a low impact on all parties involved, otherwise its use would not be desirable compared

to more traditional approaches. Hence, it should use existing technologies where possible, and require a

minimum amount of specialized software otherwise.

The basic transaction begins when the client requests access to remote resources with their browser. The
client provides authentication to the server, and the server then propagates this authentication to connect

to the remote resource. This authentication process can be broken into three stages (see Fig. 1):

Stage I Client-to-Server authentication

Stage II Identity establishment and authentication translation

Stage III Server-to-Remote execution of client requests

The client provides authentication to the browser once at the outset of a session (usually by giving a

password for a local certificate database). This single authentication then offers access to any one of the

remote resources on which the client has privileges. This is in distinct contrast to the standard model of

login-password authentication with applications such as telnet, ftp, and rlogin. In these systems, a login

and password are normally presented for each resource accessed.

Stage I

Stage II

Stage III

Figure 1: The three stages of authentication and remote execution

2

In the present scheme, the server is responsible for establishing the client’s identity, translating this

identity into a login name on the remote system, and then executing the client’s request. A variety of

implementations could be used to accomplish these tasks on the server. The simplest method is to use a

collection of executable (CGI) scripts and supporting code, customized to support the applications being

accessed on the remote systems. This is the approach used by WebSubmit, a Web-based interface to the high-

performance computing systems at NIST. [3, 4] The method of Web-based authentication being discussed is

not limited to a CGI implementation. In the remainder of the paper, however, we will assume that client

requests are handled via CGI scripts, as is execution of tasks on remote systems.

2.2 Requirements

In the present context, there are two simple security policy requirements that must be met:

• Authorized users shall have access to remote hosts with all of the privileges granted to them by a

normal login session.

• Unauthorized users shall not be able to access protected resources on either the server or remote host

systems.

Traditional login-password authentication is often used to satisfy both of these requirements. However, this

method of authentication is not completely secure in the sense that it requires the transmission of sensitive

data (passwords) over an insecure network. The goal of the present security model is to provide greater

security than that offered by this type of approach. In addition, it may be desirable to protect the client’s

data during its transactions with the remote system. The goals of the Web-based authentication framework

can thus be summarized as follows:

• Construct an authentication mechanism that provides clients with Web-based access to remote re-

sources

• Provide a level of security that exceeds that offered by traditional login-password authentication

• Create a framework that uses existing technologies where possible, and requires little or no specialized

software on either the client or the remote systems.

In the remainder of the paper, we will discuss the implementation of such an authentication framework.

3 Client-to-Server Authentication

In the first stage of the authentication process, the client must authenticate itself to the server using a Web
browser. This transaction is to be mediated by a Web server running on the server machine. At present,

there are two standard methods for performing this type of authentication: (1) basic HTTP authentication

using a login-password combination, and (2) client authentication based on public-key cryptography. Basic

HTTP authentication is described in the HTTP 1.1 protocol specification. [5] When attempting to access

restricted resources, the server requests a login-password combination from the client, which is encoded

(not encrypted) and returned to the server. The server then compares the information presented against a

database of registered users. Basic HTTP authentication is insecure since cleartext passwords are transmitted

across the network, [5] and in fact may be worse than standard login-password methods (depending on how
closely HTTP traffic is monitored on the server). It is subject to password sniffing and dictionary attack

(repeated login attempts using a known login name with passwords taken from a carefully-chosen dictionary);

it also does not provide the possibility of protecting the user’s data during the transaction. Based on these

two concerns, basic HTTP authentication was not deemed to be robust enough for the desired system.

Client authentication based on public-key cryptography can be implemented using a Web server that

implements the Secure Sockets Layer (SSL) protocol. [1] This protocol allows for strong authentication

(superior to traditional methods) and also provides data encryption over the duration of the session. It

has become the de facto standard for secure communication on the Internet, and is in the process of being

3

upgraded to an Internet standard (TLS - Transport Layer Security [6]). Finally, all recent versions of the

two dominant Web browsers support SSL. Based on these facts, SSL-based client authentication was chosen

to perform the Client-to-Server stage of the authentication process.

3.1 SSL and Digital Certificates

SSL uses a combination of public- and symmetric-key cryptography [7] to perform authentication and en-

cryption. Public-key authentication is performed using digital certificates, and allows for the exchange of a

shared secret, which is then used as an encryption key with a symmetric algorithm (e.g., DES [7]). In the

present work, we require that authentication occurs in both directions: the client authenticates itself to the

server and vice-versa. SSL also supports server-only authentication and anonymous sessions, although these

protocols are not of interest in the present application.

Digital certificates are basically containers for public keys, and they act as a means of electronic identi-

fication (see reference [2] for a more thorough discussion of certificates). The certificate and public key are

public documents that, in principle, anyone can possess. An associated private key, only possessed by the

entity to whom the certificate was issued, is used as a means of binding the certificate to that entity. Users

not in possession of this private key cannot use the certificate as a means of authentication. Entities can

prove their possession of the private key by digitally signing known data, or by demonstrating knowledge of

a secret exchanged using public-key cryptographic methods.

In practice, anyone can generate public-private key pairs and digital certificates, hence it is necessary to

determine whether the holder of a certificate is to be trusted. Identity is a common means of establishing

trust; restricted resources are only offered to certain individuals, and by establishing an entity’s identity,

one can determine whether or not to grant access. In an electronic environment, one cannot resort to visual

verification of identity, using a driver’s license, for instance. One possible model would be to place trust in

the client, i.e., to allow the client to vouch for their own identity. A second model is to place trust in a

neutral third party who will vouch for the client’s identity. The former model effectively decentralizes trust,

because the identity verifier (in this case, a Web server) is then required to trust each individual separately.

The latter approach centralizes trust in the neutral third party. History has demonstrated that trusting

clients is often ill-advised, and centralizing trust simplifies matters greatly. Hence, the trusted-third-party

model is utilized with digital certificates.

The trusted third party used in the realm of digital certificates is a Certificate Authority (CA). [7] A
CA can either issue certificates using public keys provided by clients, or it can generate a public-private

key pair for the client and then issue the certificate along with the key pair. In either case, the client

must demonstrate their identity to the CA by some trusted means. For example, the client could arrange

a face-to-face meeting with the CA and present proof of identity. The CA can then issue a certificate with

its digital signature that contains this client’s public key, as well as information about the identity of the

client. This digital signature can be verified by people who have the public key of the CA, thus establishing

the chain of trust from client to CA to server. Since the validity of a client’s identity hinges on the CA, it

is essential to utilize a CA that is trusted. Numerous commercial CAs are currently available that will issue

certificates (e.g., Thawte Consulting [8], Verisign [9]). It is also possible to install and utilize commercial

or public-domain certificate server software (e.g., Netscape Certificate Server, Entrust, and SSLeay). The
choice of a CA is largely a policy decision to be made based on the needs of the site requiring certification.

Once a client is in possession of a key pair and a certificate signed by a CA, there are two important

processes that are part of SSL session establishment:

Certificate Validation The process of verifying that the digital signature on a certificate comes from a

trusted CA and is valid. Validity of the signature ensures both that the certificate is from the trusted

CA, and that the data in the certificate has not been modified.

Peer Authentication The process of verifying that the peer possesses the private key associated with the

public key contained in a valid certificate. This can be accomplished through a variety of techniques,

the algorithm depending on the protocol.

4

The process of establishing an SSL session does not provide the Web server with the identity of the client. It

merely demonstrates that the client has a valid, signed certificate that the server trusts, and that the client

has the associated private key. The brief description of the protocol in the next section describes where

validation and authentication occur. User identity determination involves the extraction of certificate data

using other means (see Section 4.1).

3.2 SSL Connection Protocol

A rough outline of SSL with client and server authentication follows:

1. Client and server exchange greeting messages and agree upon a protocol version and cipher suite

(cryptographic algorithm). Session ID information and several other pieces of data relevant to the

session are also transmitted.

2. Server transmits its certificate to client, requests the client’s certificate, and indicates key exchange

mechanisms if necessary. In the certificate request, the server indicates acceptable CAs.

3. Client validates server’s certificate. If the certificate cannot be validated, the client is usually presented

with the option to accept it.

4. Client transmits its certificate to server, along with a digital signature (using the client’s private key)

of messages exchanged during the handshake. Data containing the means to generate a shared secret

(used to encrypt session data) is transmitted using a secure key exchange algorithm selected during the

previous step of the protocol. Client generates the shared secret using the agreed upon parameters.

5. Server validates the client certificate and verifies the client’s signature. If verified, the server decrypts

cipher parameters using its private key, then generates the shared secret using the agreed upon param-

eters.

6. Client and server begin to exchange encrypted application data.

4 Identity Establishment and Authentication Translation

Once a client has been authenticated by the server (i.e., they have presented a valid certificate and a verifiable

signature), the second stage of the process occurs: identity establishment and authentication translation.

These processes occur on the Web server host itself, and allow the client’s request for remote resources to

proceed to the proper host.

4.1 Identity Establishment

As stated in Section 3.2, the SSL connection process does not yield the client’s identity. Additional action

must be taken to obtain the certificate data and to map that to a unique identity (a userlD to be used with

the authentication framework). Obtaining this userlD is crucial, because it allows the server to propagate

the client’s request to the remote system. The userlD can be derived from the certificate in a variety of ways,

and it should be associated with a single client. This does not preclude a single client from having multiple

certificates (and hence multiple, valid userlDs); the mapping may be many-to-one from userlDs to clients.

There is information in the certificate about the client’s identity (Name, Organization, Email), but this

information may not necessarily be unique. One would like to construct a userlD that is based not only

upon this information, but also on the public key of the client. One simple solution that presents itself is

to require clients to possess specially-formatted certificates that contain information about their userlD on

the system. This does not correlate the userlD and public-key, however, and creates logistical difficulties

with issuing certificates in the required format. The entire certificate itself cannot be used, since this would

be cumbersome, but there is another alternative: construct a fingerprint (message digest) unique to a given

certificate. Fortunately, cryptographers and mathematicians have devised and analyzed one-way (or hash)

functions that accomplish precisely this task.

5

Message digests are used widely in cryptography for digital signature verification and for ensuring data

integrity. [7] A hash function is a many-to-one function that takes an arbitrary-length input message M
and constructs a fixed-length output digest or hash h = H(M). Properties of a secure hash function are as

follows:

1. Given M, it is easy to compute h

2. Given h, it is computationally infeasible to compute M such that H(M
)
= h (i.e., the function is

one-way)

3. Given M, it is computationally infeasible to find another message M' such that H(M) = H(M') (weak

collision resistance
)

4. It is computationally infeasible to find any two distinct messages M and M' such that h = H(M) =
H(M') (collision resistance

)

In the present context, a unique userID is determined by constructing the hash of the client’s certificate

using a trusted algorithm (SHA-1 or MD5, for example). In order for the userlD to be unique, one must

have reasonable certainty that another client’s certificate will not hash to the same value. This requirement

is satisfied as long as the hash function is sufficiently collision resistant.

In order to determine the userlD in a web environment, code on the server must have access to the

client’s certificate. This can be accomplished by directing the Web server to place the base-64 encoded

version of the client’s certificate in the environment when needed. Server software constructs a hash of the

certificate using whatever means desired, at which point the hash (userlD) can be used for authentication

translation. A more detailed analysis of possible attacks against this method of identity establishment is

given in Section 6.4.

4.2 Authentication Translation

Once a userlD has been established for a client, an authentication database is used to translate this user’s

ID into login information on the remote hosts. This authentication database utilizes the userlD as the key

for each record. Attributes of the database should include, but are not limited to, the following: user name,

user e-mail address, user status within the system (active or inactive), and the user’s login names on the

collection of machines that can be accessed by the system. The process of registering users with the system

presents logistical and administrative problems, unless the CA and the administrator of the authentication

system are identical. One simple solution is for the system software to contact the administrator when
unauthorized access attempts are logged. At this point, the decision can be made as to whether the access

attempt was by a valid, first-time user, or by an attacker. In the former case, the new user’s data can be

manually entered into the authentication database by the site administrator. Automatic registration with

the system (i.e., addition to the authentication database) would defeat the entire scheme, unless other secure

means can be established for this task.

When a registered client makes a request to access a remote system, the user’s active status is first

verified. If they are not active within the system, they are not allowed access to resources. This essentially

amounts to the possibility for revocation of access privileges, in addition to those provided by the client

certificate’s validity period and any CA revocation lists in use. Once the user’s active status is verified, the

userlD-remote host combination is used to index into the database, which determines the login of the user on

the remote system. At this point, the request can be propagated to the remote system by the server software.

The entire process of identity establishment and authentication translation is summarized in Figure 2.

5 Server-to-Remote Execution

In the present architecture, the web server host acts as a proxy for handling client requests. The web server

is the agent that accomplishes remote execution, performed by running a command on the server that in turn

spawns the remote command. The commands on the server and remote system run under (possibly distinct)

6

Figure 2: Identity establishment and authentication translation. The server host is contacted by the client

using an SSL connection with client authentication; the client is requesting the use of resources on hostName.

The client’s certificate is made available to server software, which constructs a userlD using a secure hash

function applied to the certificate. The userlD and hostName are indexed into the authentication database,

which retrieves the login name for the client on hostName (if possible). The client’s request is then processed,

and all information is forwarded to the software to perform execution on the remote host hostName.

usernames UID^ and UID^, respectively. Since the server is necessarily accomplishing a task for the client

on the remote system, UID^ = UID^*en * (the UID that corresponds to the client’s login name on the remote

system). In the present scheme, UID^ corresponds to the UID of the Web server user (serverUser). If

the client had an account on the server, it would also be possible to have UID^ = UID|heni (by having the

Web server invoke an SUID script). In general, however, it should be assumed that not all clients will have

accounts on the server, and indeed, this is preferable from a security standpoint. The fewer accounts there

are on the server host, the fewer entry points there are for unauthorized logins.

Regardless of what server-side UID is used to initiate remote command execution, there needs to be

a mechanism for this execution. An explicit goal stated at the outset was that the authentication system

developed should utilize existing technologies where possible. This minimizes the amount of specialized, and

possibly untrusted, software running on the remote hosts. One common means for executing commands
remotely on UNIX systems is via the remote shell (rsh) command. [10] Using appropriately configured

.rhosts files, commands can be executed from the server host in a client’s account on the remote system.

However, rsh does not protect against the possibility of unauthorized clients masquerading as the server

host. This is typically done using IP or DNS spoofing. A method of executing commands remotely that is

not subject to these attacks, and that provides encryption, is the Secure Shell (SSH) protocol. [11, 12]

SSH has grown in popularity since its introduction, and is in the process of being considered for an

Internet standard. The software has been ported to a wide variety of UNIX platforms; both commercial

and non-commercial versions are available. SSH has several features that make it attractive in the present

context:: (1) Strong authentication methods prevent identity spoofing, trojan horses, and similar means

7

of attack, (2) Encryption and compression of data, and (3) Secure means for file transfer. These qualities

precisely meet the needs of the problem being addressed, hence SSH was chosen as the means to execute

commands on the remote system.

SSH uses a hybrid cryptosystem similar to SSL; a shared secret is exchanged using public-key cryptog-

raphy, and then data is encrypted using a symmetric cipher based on the shared secret. The basic SSH
protocol is as follows:

1. Client and server exchange greeting messages and establish an algorithm for public key exchange

(Diffie-Helman in the present example).

2. Server transmits its host key to the client along with a signature verifying that it has the proper private

key. Server generates a shared secret.

3. Client validates server’s certificate (either using a CA or against a local database), verifies the server’s

signature, then generates the shared secret.

4. Client and server switch to the use of the shared secret to encrypt data. All transmissions from this

point on are secure.

5. Client authenticates itself to server using public-key authentication, password authentication, or host-

based authentication (present scheme).

6. Client and server exchange encrypted data within the SSH connection protocol.

In the present approach, secure host-based authentication (called RhostsRSAAuthentication) is used, since

this allows the Web server proxy to execute commands on the remote systems as the user
,
without the need

for password exchanges.

5.1 Server Configuration

All remote hosts that are to be accessed must be known to the server system in order to establish the

initial encrypted communications channel. This requires placing the public host keys for these systems into

/etc/ssh_known_hosts on the server machine. In addition, the server system needs to have ssh and scp

(Secure CoPy) installed, although it is not necessary to have an SSH daemon running. The daemon is

unnecessary because the server system will always be the system to initiate the SSH request.

5.2 Remote System Configuration

Remote systems must be configured to receive SSH connections and authenticate clients using the RSA host-

based scheme. The remote system must have a properly configured SSH daemon (sshd); this daemon must

be able to locate both ssh and scp on the system, and it should be set up so that it cannot revert to insecure

methods of authentication. Client host public keys are stored on the remote systems to authenticate client

hosts (again, typically in /etc/ssh_known_hosts). For RSA host-based authentication without passwords,

user accounts must also be configured to allow serverUser to execute commands for the client (since we are

using UID^ = uiDser t’erLser
). This is accomplished by creating $H0ME/ . shosts (in each client account, on

each remote host) with the single line

server .host . name serverUser

where server .host .name is the Internet host name for server host, and serverUser is the UID associated

with the Web server. The user is necessarily providing the serverUser on the server host the ability to

execute commands in their account on each remote system.

8

6 Discussion

Utilization of the authentication framework discussed here raises some questions of policy. Concern over

computer security has risen noticeably in the past few years, and any new authentication system inevitably

contributes to this concern. Security policies in effect on either the remote or server systems may in fact

prevent use of the methods discussed here. The sections that follow discuss various issues related to policy,

and an attempt is made to assess the risks associated with the use of such a system.

6.1 Certificate Authorities

Certificate authorities are a means for centralizing trust, so that the server need not trust each individual

client. The server, however, must trust the CA to vouch for the identity of clients. As mentioned earlier,

numerous commercial CAs exist that can issue certificates to clients. However, it may be that there is no

reason to trust a commercial CA more than one would trust clients. In such a case, it will be necessary to

use and maintain a CA dedicated to the system in use. The use of a CA for digital certificates raises two

other concerns: the protocols used for issuing and distributing certificates to clients. Resolution of these

twin concerns depends largely on the site under consideration and on the CA ultimately chosen to perform

the task. Needless to say, however, the difficulty in choosing and using a CA should not be underestimated,

since the CA is one very crucial link in the entire authentication process.

6.2 Firewalls

Firewalls [10] protect one network from another by filtering traffic, and their use is becoming more widespread,

especially for large organizations. Many firewalls are configured to block Web server traffic (HTTP or HTTPS).

In addition, many firewalls block rsh requests, and may consider ssh requests equally unreliable. For these

reasons, firewall policy for the server host and the remote systems must be considered. If the server host is

behind a firewall, then one must consider whether clients outside the firewall will be using the Web server

to access remote hosts. If this is the case, then the firewall must pass at least HTTPS traffic to allow SSL
connections to the Web server. If all clients of the system are within the firewall, then this is of no concern.

In order for clients to have access to remote systems, these systems must be open to SSH traffic from the

server host. Any remote system with a firewall that does not pass SSH packets from the server host will be

unusable in the present scheme.

6.3 SSH

Some systems discourage the use of .rhosts files because of the danger these files pose to the system

through identity spoofing. The use of .shosts files has the same result as .rhosts files (i.e., access without

passwords), but the means through which this is achieved are totally different. SSH strong authentication

essentially prevents identity spoofing. Hence, the only concern with the present approach is whether the

client and remote host are comfortable with allowing the server host Web user to execute commands on

behalf of the client. By accepting the server host’s public SSH key, the remote system acknowledges trusting

the server host. A client’s trust in the server host is equivalent to the trust they place in any system

administrator. The administrator of the Web server would be the only one who could act in their stead

(barring root compromises of the server host). Concern regarding the trustworthiness of the server is thus

in the hands of the remote system and the client; either can disable trust at any time with little effort.

The use of SSH also presents some administrative issues. On the remote system, sshd must be properly

configured so that both ssh and scp are in the path it traverses looking for these commands. If a target

system administrator moves these binaries for one reason or another, but does not recompile sshd to search

the new location(s), then SSH to this target will not work, sshd should be activated during the boot cycle

of the target system, otherwise normal system shutdowns may disrupt service. Finally, both the remote and

server systems should pay attention to version compatibility with SSH. At the time of writing, SSH v2.0 is

emerging, but not yet stable. Versions of ssh, scp, and sshd prior to 1.2.26 may not interoperate properly

with Version 2.0, and hence the use of these earlier versions of the software should be discouraged.

9

6.4 Risk Assessment

As with any authentication scheme, it is important to assess the risks with the system. The present approach

offers better security in general than a simple login-password scheme, such as that used by telnet. However,

it does present a few different types of vulnerabilities that need to be addressed. For more detailed discussions

about cryptographic security and general internet security, the interested reader is referred to References [7,

10]-

6.4.1 Identity Establishment

Confidence in identity establishment is crucial in the present authentication scheme, hence it is worth ex-

amining in some depth. There are two basic cases that we will consider, which we will refer to as active

attacks and inadvertent attacks. An active attack consists of an unauthorized user attempting to access the

system; unauthorized in this context means the client does not have a valid certificate and is not registered.

An inadvertent attack involves the situation where a user possesses a certificate recognized by the HTTPS
server, but is not registered with the system.

In the following descriptions, active and inadvertent attacks are symbolized A{n) and 7(n), respectively.

Al: The attacker has a registered user’s certificate M: A user’s certificate is of no value in and of

itself, since it can only be used in an SSL connection if the connecting client also has the associated

private key. If the attacker does not have this key, an attack is still possible. Assuming the hacker

knows the hash algorithm used to construct userlDs, they can construct a valid userlD h = H(M).
They can then attempt to construct another certificate M' such that H(M '

)
= h, where the public

and private key associated with this certificate axe known to them. Weak collision resistance of the

hash function renders this task computationally infeasible. Note that there is the additional problem

that this randomly constructed certificate must also possess a valid signature. Since the CA’s private

key is unknown, the attacker is presented with another computationally-infeasible problem, and is thus

doubly deterred.

A2: The attacker has a registered user’s userlD: This attack is equivalent to .41 (once the attacker

has constructed the hash value of the user’s certificate). Hence, a knowledge of the authentication

database is insufficient to gain access.

A3: The attacker has no information related to registered users: In this case, the attacker must

randomly generate a valid certificate that also happens to have the hash value of a registered user.

This case is even more desperate than case Al, since testing each randomly generated certificate

involves actually contacting the server to see if access is granted. In cases .41 and .42, the attacker

can at least generate and test their pirate certificate behind closed doors, as it were. With repeated

attempts to access the server, the attacker would hopefully be noticed due to the high volume of server

hits.

II: Two or more user’s certificates yield the same hash value: Consider the case where we have two

users, A and B. If A and B are both valid users, then the equivalence of their userlD values would

be noticed at registration, and a newT certificate would be requested from one of the users. In the case

where .4 is registered, but B only possesses a certificate signed by a valid CA, the situation is slightly

different. In this case, the only way user B could gain access to the system was if their certificate

accidentally hashed to the value held by another valid user (say .4). There is a vanishing probability

of this occurring if the hash function is collision-resistant.

6.4.2 Client-side Security

Clients should use browsers that support 128-bit encryption, and must ensure the security of their browser

and its certificate database password. Browsers typically cache a user’s certificate database password. Hence,

an unattended browser at an unlocked machine could be used to connect to the system and gain access. In

addition, if a user’s certificate database password is not robust, it could be cracked if their account is cracked,

also allowing access.

10

6.4.3 Attacks against SSL

SSL has been designed to be resistant to a variety of attacks. SSL Version 3.0 provides more robust security

than version 2.0, and its use is recommended. The interested reader should refer to the documentation

on SSLv3.0 in Reference [1] for a discussion of these attacks. In addition, it is recommended that 128-bit

encryption be used for all SSL connections, thus deterring brute-force attack against a negotiated session.

6.4.4 Server Root Compromise

If the root account on the server host were to be compromised, all user accounts on remote systems would

be open to access. For this reason, the security of the server machine is essential. There should be few or

no user accounts on the system, and ideally, the machine should be behind a firewall. Security patches on

the system should be maintained, and all unnecessary services should be disabled (e.g., rshd and telnet,

dial-in access).

6.4.5 User Registration Protocol

In the case where the CA and server administrator are one and the same, user registration (i.e., addition to

the authentication database) does not present any difficulties. However, the more likely case is that the CA
and server administrator will be different (and possibly in different locations). In this situation, registration

of users becomes a more critical issue. Ideally, the process of registration should be automated. However, this

does not allow for the case where users not registered to the system are allowed access to the secure server

for other reasons. User registration can be handled fairly easily in a CGI context by notifying the server

administrator of unauthorized access attempts. However, if the number of users registered with the system

grows large, this may be a problematic method for dealing with registration. In any case, circumventing

or breaking registration protocols is a potential issue, and administrators should think through this process

carefully.

6.4.6 Web Server Misconfiguration

If the Web server is misconfigured on the server host, or if the configuration is intentionally corrupted, this

could alter the way identity establishment and authentication translation are performed. This would only

be a problem if it occurred in conjunction with either a root compromise or with unauthorized access to

another account. Otherwise, Web server misconfiguration would probably just lead to inoperable software.

6.4.7 SSHD Misconfiguration

If sshd is misconfigured to allow .rhosts authentication, the remote systems could be subject to identity

spoofing through this channel. It is highly recommended to configure sshd so that this is not allowed (in

fact, this is the default configuration).

7 Conclusion

An authentication framework has been presented that allows clients to connect to remote hosts using strong

authentication methods in conjunction with the Web. The level of security provided is superior to that

provided by traditional login-password approaches, and requires a minimum of specialized software on either

the client or remote systems. The method presented provides the possibility for access to remote resources

that might not otherwise be accessible via the interface offered by the Web.

8 Acknowledgements

The authors would like to acknowledge James Dray of the NIST security division for useful discussions

regarding cryptography. John Wack was also particularly helpful in issues related to certificate authorities

11

and digital certificates in general.

References

[1] Netscape SSL Overview, http://home.netscape.com/eng/ssl3/ssl-toc.html

[2] R. Housley, W. Ford, W. Polk, D. Solo, PKIX Working Group Internet Draft (work in progress),

http: / /search. ietf . org/ internet-drafts/draft-ietf-pkix-ipki-part 1-11 . txt

[3] Robert R. Lipman, Judith E. Devaney, “WebSubmit - Running Supercomputer Applica-

tions via the Web”, Proceedings of SuperComputing 96
,

November 1996, Pittsburgh, PA
(http : //www . supercomp . org/sc96/SC96PR0C/P0STER . HTM)

[4] R. McCormack, J. Koontz, J. Devaney, “WebSubmit: Web-Based Applications with Tel”, NISTIR 6165,

June 1998, National Institute of Standards and Technology.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, RFC 2068,

http : //www . w3 . org/Protocols/rf c2068/rf c2068.

[6] T. Dierks and C. Allen, Transport Layer Security Internet Draft (work in progress),

http : //search . ietf . org/ internet-drafts/draft-ietf -t ls-protocol-06 . txt

[7] Bruce Schneier, Applied Cryptography
,
2nd Edition, John Wiley & Sons (New York, 1996)

[8] Thawte Certification, http : / /www . thawte . com

[9] Verisign, http://www.verisign.com

[10] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security
,
2nd Edition, O’Reilly & Assoc.

(Sebastopol, 1996)

[11] Tatu Ylonen, SSH Web site (http://www.ssh.fi)

[12] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. Lehtinen, SSH Internet Draft (work in progress),

http : //search . ietf . org/internet-drafts/draft-secsh-architecture-02 . txt

12

